Non-linear least-squares inversion with data-driven Bayesian regularization

نویسندگان

  • Tor Erik Rabben
  • Bjørn Ursin
چکیده

The non-linear inverse problem is formulated in a Bayesian framework. The multivariate normal distribution is assumed in both the noise and prior distributions. However, only the structures of the covariance matrices have to be specified, estimation of the variance levels is included in the inversion procedure. The maximum a posteriori approximation is derived, and the final result is a weighted least-squares inversion algorithm with the ratio between the variance levels as an adaptive, data-driven regularization factor, hence the name Bayesian regularization. The algorithm is tested on inversion of seismic reflection amplitudes and compared with the L-curve approach for choosing the regularization parameter. The Bayesian regularization results in a better regularization value in only a fraction of the time.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large-scale Inversion of Magnetic Data Using Golub-Kahan Bidiagonalization with Truncated Generalized Cross Validation for Regularization Parameter Estimation

In this paper a fast method for large-scale sparse inversion of magnetic data is considered. The L1-norm stabilizer is used to generate models with sharp and distinct interfaces. To deal with the non-linearity introduced by the L1-norm, a model-space iteratively reweighted least squares algorithm is used. The original model matrix is factorized using the Golub-Kahan bidiagonalization that proje...

متن کامل

A Priori Modeling for Gradient Based Inverse Scattering Algorithms

This paper presents a Fisher information based Bayesian approach to analysis and design of the regularization and preconditioning parameters used with gradient based inverse scattering algorithms. In particular, a one-dimensional inverse problem is considered where the permittivity and conductivity profiles are unknown and the input data consist of the scattered field over a certain bandwidth. ...

متن کامل

Transdimensional Monte Carlo Inversion of AEM Data

The majority of existing methods used for the inversion of airborne electromagnetic (AEM) data use what are generally called gradient-based optimization techniques. They typically minimize an objective function comprised of data misfit (e.g. least squares) and model regularization (e.g. roughness) terms. Since the problem is non-linear, an iterative search involving the matrix solution of equat...

متن کامل

A new method for 3-D magnetic data inversion with physical bound

Inversion of magnetic data is an important step towards interpretation of the practical data. Smooth inversion is a common technique for the inversion of data. Physical bound constraint can improve the solution to the magnetic inverse problem. However, how to introduce the bound constraint into the inversion procedure is important. Imposing bound constraint makes the magnetic data inversion a n...

متن کامل

Modeling and Inversion of Self-Potential Data

This dissertation presents data processing techniques relevant to the acquisition, modeling, and inversion of self-potential data. The primary goal is to facilitate the interpretation of self-potentials in terms of the underlying mechanisms that generate the measured signal. The central component of this work describes a methodology for inverting self-potential data to recover the three-dimensi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008